Shortcut Partition for Minor-Free Graphs: Steiner Point Removal and More

Hsien-Chih Chang

Lazar Milenković

Jonathan Conroy

Shay Solomon

Hung Le

Cuong Than

Steiner Point Removal

Input: Weighted tree G and set T of *terminal* vertices.

Output: Weighted tree G' with vertex set T, such that $\forall x, y \in T$ $d_G(x, y) \le d_{G'}(x, y) \le \alpha \cdot d_G(x, y)$

LGup 'Ol]

Steiner Point Removal

Input: Weighted tree G and set T of *terminal* vertices. **Output**: Weighted tree G' with vertex set T, such that $\forall x, y \in T$ $d_G(x, y) \leq d_{G'}(x, y) \leq \alpha \cdot d_G(x, y)$

vertices. $\begin{bmatrix} G_{up} & 0 \\ C_{xKR} & 0 \end{bmatrix}$

Steiner Point Removal Input: Weighted tree G and set T of *terminal* vertices. **Output**: Weighted tree G' with vertex set T, such that $\forall x, y \in T$ $d_G(x, y) \le d_{G'}(x, y) \le \alpha \cdot d_G(x, y)$

vertices. $\begin{bmatrix} G_{up} & 0 \\ C_{XKR} & 0 \end{bmatrix}$

SPR: (Some) Prior Results

SPR Distortion

- Trees: 8 [Gup'01, CXKR'06]
- Outerplanar: O(1) [BG'08]
- Series-Parallel: O(1) [HL'22], using framework of [Fil'20]

SPR: (Some) Prior Results

SPR Distortion

- Trees: 8 [Gup'01, CXKR'06]
- Outerplanar: O(1) [BG'08]
- Series-Parallel: O(1) [HL'22], using framework of [Fil'20]

Question: Do planar — or, further, minor-free graphs admit SPR solutions with O(1) distortion?

SPR: (Some) Prior Results

SPR Distortion

- Trees: 8 [Gup'01, CXKR'06]
- Outerplanar: O(1) [BG'08]
- Series-Parallel: O(1) [HL'22], using framework of [Fil'20]

Question: Do planar — or, further, minor-free graphs admit SPR solutions with O(1) distortion?

General graphs: $\omega(1)$ distortion [TC'24]

SPR: Our Results

Every planar graph admits an SPR solution with O(1)distortion.

Every K_r -minor-free graph admits an SPR solution with $2^{O(r \log r)}$ distortion.

Outline

4. Our deterministic modification

E Main technical contribution

Scattering Partition

Given graph G with diameter Δ . Want to partition vertices into clusters of diameter $\varepsilon \Delta$, such that any shortest-path intersects only $O(1/\varepsilon)$ clusters

Scattering partition \implies SPR with O(1) distortion

Filtser'201

Given graph G with diameter Δ . Want to partition vertices into clusters of diameter $\varepsilon \Delta$, such that any shortest-path intersects only $O(1/\varepsilon)$ clusters

Given graph G with diameter Δ . Want to partition vertices into clusters of diameter $\varepsilon \Delta$, such that any shortest-path intersects only $O(1/\varepsilon)$ clusters

[CCLMST'23] Partition graph into expanded paths and subset of points within distance $\varepsilon \Delta$ of π).

and subset of points within distance $\varepsilon \Delta$ of π).

and subset of points within distance $\varepsilon \Delta$ of π).

and subset of points within distance $\varepsilon \Delta$ of π).

and subset of points within distance $\varepsilon \Delta$ of π).

and subset of points within distance $\varepsilon \Delta$ of π).

How to Get Shortcut Partition

Partition graph into expanded paths satisfying buffer property

[CCLMST'23] finds expanded paths by working along the *outer face*. How to breach planarity barrier?

Cop-Decomposition [Abraham-Gavoille-Gupta-Neiman-Talwar'14]

treewidth k: bags of $\leq k$ vertices

Cop-Decomposition [Abraham-Gavoille-Gupta-Neiman-Talwar'14]

treewidth k: bags of $\leq k$ vertices cop-width k [And'98]: bags of $\leq k^2$ shortest* paths

Cop-Decomposition [Abraham-Gavoille-Gupta-Neiman-Talwar'14]

treewidth k: bags of $\leq k$ vertices cop-width k [And'98]: bags of $\leq k^2$ shortest* paths cop-width k [AGGNT'14]: bags of $\leq k^2$ expanded paths

- Select vertex v. visible cluster.
- $T \leftarrow SSSP$ tree from v to each
- Create cluster consisting of Tand an $\varepsilon \Delta$ neighborhood.

Cop decomposition

- Select vertex v. visible cluster.
- $T \leftarrow SSSP$ tree from v to each
- Create cluster consisting of Tand an $\varepsilon \Delta$ neighborhood.

Cop decomposition

- Select vertex v. • $T \leftarrow SSSP$ tree from v to each visible cluster.

- Create cluster consisting of Tand an $\varepsilon \Delta$ neighborhood.

Cop decomposition

- Select vertex v. • $T \leftarrow SSSP$ tree from v to each visible cluster.

- Create cluster consisting of Tand an $\varepsilon \Delta$ neighborhood.

Cop decomposition

- Select vertex v. • $T \leftarrow SSSP$ tree from v to each visible cluster.

- Create cluster consisting of Tand an $\varepsilon \Delta$ neighborhood.

Cop decomposition

- Select vertex v. • $T \leftarrow SSSP$ tree from v to each visible cluster.

Cop decomposition

- Select vertex v. • $T \leftarrow SSSP$ tree from v to each visible cluster.

Cop decomposition

- Select vertex v. • $T \leftarrow SSSP$ tree from v to each visible cluster.

Cop decomposition

- Select vertex v. • $T \leftarrow SSSP$ tree from v to each visible cluster.

Cop decomposition

- Select vertex v. • $T \leftarrow SSSP$ tree from v to each visible cluster.

Cop decomposition

• Select vertex v.

visible cluster.

 \bullet Create cluster consisting of Tand an $\varepsilon \Delta$ neighborhood.

Cop decomposition

• $T \leftarrow SSSP$ tree from v to each

Cop-Decomposition: Buffer **Property**?

- Select vertex v.

visible cluster.

- $T \leftarrow SSSP$ tree from v to each

Cop-Decomposition: Buffer **Property**?

visible cluster.

• Create cluster consisting of Tand an $\mathcal{O}(\varepsilon \Delta)$ neighborhood. random

[AGGNT'14]: Buffer property holds in expectation with buffer $\varepsilon \Delta / r$, for K_r -minor-free graphs.

- $T \leftarrow SSSP$ tree from v to each

Buffered Cop-Decomposition: **New** Construction

- Select vertex v.
- $T \leftarrow \mathsf{SSSP}$ tree from v to each
 - visible cluster.
- \bullet Create cluster η consisting of T
 - and an $\varepsilon \Delta / r$ neighborhood.
- If η cuts off old supernode, expand it by $\varepsilon \Delta/r$. Repeat.

Buffered Cop-Decomposition: New Construction

- Select vertex v.
- $T \leftarrow SSSP$ tree from v to each
 - visible cluster.
- Create cluster η consisting of T
 - and an $\varepsilon \Delta / r$ neighborhood.
- If η cuts off old supernode, expand it by $\varepsilon \Delta / r$. Repeat.

Conclusion

We show K_r -minor-free graphs admit $2^{O(r \log r)}$ -distortion SPR solutions by constructing shortcut partition.

Open Questions

- Improved dependence on minor size? (i.e., poly r for K_r -minor-free or even treewidth-r graphs)
- What O(1) distortion is achievable for planar graphs?
- Scattering (not shortcut) partition for planar/minor-free?

Conclusion

We show K_r -minor-free graphs admit $2^{O(r \log r)}$ -distortion SPR solutions by constructing shortcut partition.

Open Questions

- Improved dependence on minor size? (i.e., poly r for K_r -minor-free or even treewidth-r graphs)
- What O(1) distortion is achievable for planar graphs?
- Scattering (not shortcut) partition for planar/minor-free?

Thank you!