
6.851 Final Project:
Implementing
Dynamic LCA

Jonathan Conroy

Background - LCA Problem

● LCA(x, y) = Lowest Common Ancestor of x and y

● Static Tree: Reduce to RMQ

● Dynamic Tree: Gabow’s data structure

○ LCA: O(1) worst-case

○ insert_leaf: O(1) amortized possible, O(\log n) amortized
implemented

Static Data Structure
● 1. Heavy-light path decomposition: Maintain “compressed tree”(log n height)

● 2. Assign “fat preorder” intervals to each node

○ LCA(x, y) must have interval with length greater than
|start(x) - start(y)|

● 3. Store “ancestor” tables to
compute LCA in O(1) time in
compressed tree

● O(n log n) space and
preprocessing time

Dynamic Data Structure
● Add a leaf as a new path in the compressed tree

● If a subtree grows too large, reorganize it

● O(log2 n) amortized insertion

● O(n log n) space

Indirection
● Partition nodes into subtrees of size O(log n).

● Maintain “summary” data structure with a node for each full subtree using
expensive data structure

● Can solve LCA within subtree in O(1) time

Demo

Testing - Correctness

● Implemented LCA naive algorithm

● Generated random trees (using Prüfer sequences)

○ Random LCA queries on large trees

Testing - Performance

